Design of a blocking-resistant anonymity system

Roger Dingedine, Nick Mathewson
The Tor Project
Outline

- Crash course on Tor
- Goals for blocking resistance
- Assumptions (threat model)
- What Tor offers now
- Current proxy solutions
- What we need to add to Tor
- All the other issues that come up
Tor: Big Picture

- Freely available (Open Source), unencumbered.
- Comes with a spec and full documentation: Dresden and Aachen implemented compatible Java Tor clients; researchers use it to study anonymity.
- Chosen as anonymity layer for EU PRIME project.
- 200000+ (?) active users.
- PC World magazine named Tor one of the Top 100 Products of 2005.
Anonymity serves different interests for different user groups.

- Governments
- Businesses

Anonymity

“It's privacy!”

Private citizens
Anonymity serves different interests for different user groups.

- **Governments**
 - "It's network security!"

- **Businesses**
 - "It's privacy!"

- **Private citizens**
Anonymity serves different interests for different user groups.

Governments

“It's traffic-analysis resistance!”

Businesses

“It's network security!”

Anonymity

“It's privacy!”

Private citizens
The simplest designs use a single relay to hide connections.

(example: some commercial proxy providers)
But a single relay is a single point of failure.

Eavesdropping on the relay works too.
So, add multiple relays so that no single one can betray Alice.
A corrupt first hop can tell that Alice is talking, but not to whom.
A corrupt final hop can tell that somebody is talking to Bob, but not who.
Alice makes a session key with R1
...And then tunnels to R2...and to R3
Attackers can block users from connecting to the Tor network

- By blocking the directory authorities
- By blocking all the server IP addresses in the directory
- By filtering based on Tor's network fingerprint
Goals

- Attract, and figure out how to use, more relay addresses
- Normalize Tor's network fingerprint
- Solve the discovery problem: how to find relay addresses safely
- Don't screw up our anonymity properties in the process
Adversary assumptions
aka Threat model

• Aim to defend against a strong attacker
 – so we inherit defense against weaker attackers

• Have a variety of users in mind
 – Citizens in China, Thailand, ...
 – Whistleblowers in corporate networks
 – Future oppressive situations

• Attackers will be in different stages of the arms race
Attacker's goals (1)

- Restrict the flow of certain kinds of information
 - Embarrassing (rights violations, corruption)
 - Opposing (opposition movements, sites that organize protests)
- Chill behavior by *impression* that online activities are monitored
Attacker's goals (2)

- Complete blocking is not a goal. It's not even necessary.
- Similarly, no need to shut down or block every circumvention tool. Just ones that are
 - popular and effective (the ones that work)
 - highly visible (make censors look bad to citizens -- and to bosses)
Attacker's goals (3)

- Little reprisal against passive consumers of information.
 - Producers and distributors of information in greater danger.
- Censors (actually, govts) have economic, political, social incentives not to block the whole Internet.
 - But they don't mind collateral damage.
Main network attacks

- Block by IP address / port at firewall
- Keyword searching in TCP packets
- Intercept DNS requests and give bogus responses or redirects
Design assumptions (1)

- Network firewall has limited CPU and memory per connection
 - full steganography not needed, thankfully
- Time lag between attackers sharing notes
 - Most commonly by commercial providers of filtering tools
 - Insider threat not a worry initially
Design assumptions (2)

- Censorship is not uniform even within each country, often due to different ISP policies.
- Attacker can influence other countries and companies to help them censure or track users.
Design assumptions (3)

- Assume the users aren't attacked by their hardware and software
 - No spyware installed, no cameras watching their screens, etc.
- Assume the users can fetch a genuine copy of Tor: use GPG signatures, etc.
Outline

• Goals
• Assumptions (threat model)
• What Tor offers now
• Current proxy solutions
• What we need to add to Tor
• All the other issues that come up
Tor gives three anonymity properties

• #1: A local network attacker can't learn, or influence, your destination
 – Clearly useful for blocking resistance

• #2: No single router can link you to your destination
 – The attacker can't sign up relays to trace users

• #3: The destination, or somebody watching it, can't learn your location
 – So they can't reveal you; or treat you differently
Other Tor design features (1)

- Well-analyzed, well-understood discovery mechanism: directory authorities.
- They automatically aggregate, test, and publish signed summaries of the available routers.
- Tor clients fetch these summaries to learn which routers have what properties.
- Directory information is cached throughout the Tor network.
Other Tor design features (2)

- The list of dir authorities is not hard-wired.
- There are defaults, but you can easily specify your own to start using a different (or even overlapping!) Tor network.
- For example, somebody could run a separate Tor network in China.
- (But splitting up our users is bad for anonymity.)
Other Tor design features (3)

- Tor automatically builds paths, and rebuilds and rotates them as needed.
- More broadly, Tor is just a tool to build paths given a set of routers.
- Harvard's “Blossom” project makes this flexibility more concrete:
 - It lets users view Internet resources from any point in the Blossom network.
Other Tor design features (4)

- Tor separates the role of “internal relay” from the role of “exit relay”.
- Because we don't force all volunteers to play both roles, we end up with more relays.
- This increased diversity is what gives Tor users their anonymity.
Other Tor design features (5)

- Tor is sustainable. It has a community of developers and volunteers.
- Commercial anonymity systems have flopped or constantly need more funding for bandwidth.
- Our sustainability is rooted in Tor's open design: clear documentation, modularity, and open source.
Other Tor design features (6)

- Tor has an established user base of hundreds of thousands of people around the world.
- Ordinary citizens, activists, corporations, law enforcement, even govt and military users.
- This diversity contributes to sustainability.
- It also provides many many many IP addresses!
Anonymity is useful for censorship-resistance too!

- If a Chinese worker blogs about a problem at her factory, and she routes through her uncle's computer in Ohio to do it, ...?

- If any relay can expose dissident bloggers or compile profiles of user behavior, attacker should attack relays.

- ...Or just spread suspicion that they have, to chill users.
Outline

- Goals
- Assumptions (threat model)
- What Tor offers now
- *Current proxy solutions*
- What we need to add to Tor
- All the other issues that come up
Relay versus Discovery

There are two pieces to “proxying” schemes:

- a relay component: building circuits, sending traffic over them
- a discovery component: learning what routers are available
Centrally-controller shared proxies

- Existing commercial anonymizers are based on a set of single-hop proxies.
- Typically characterized by two features:
 - They control and operate the proxies centrally.
 - Many different users get assigned to each proxy.
- Weak security compared to distributed-trust.
- But easier to deploy, and users don't need new software because they completely trust the proxy already.
Independent personal proxies

• Circumventor, CGIProxy, Psiphon
• Same relay strategy, new discovery strategy: “Find a friend to install the relay for you.”
• Great for blocking-resistance, but huge scalability question:
 • How does the user in China find a volunteer in Ohio?
 • How does the volunteer in Ohio find a user in China?
Open proxies

• Google for “open proxy list”.
• Companies sell refined lists.
• Downsides:
 – Widely varying bandwidth, stability, reachability.
 – Legally questionable.
 – Not encrypted in most cases; keyword filtering still works.
 – “Too convenient” Are they run by the adversary?
JAP and blocking-resistance

- Stefan Kopsell's paper from WPES 2004
- This is the idea that we started from in this blocking-resistance design.
- Uses the JAP anonymity network rather than Tor.
- Discovery is handled by making users solve a CAPTCHA in order to learn a relay address.
Skype

• Port switching and encryption avoid the simple blocking and filtering attacks.
• Still has a central login server?
...and Tor itself

• Tor's website is blocked in many places, but not the Tor network. Why?
• Tens of thousands of users? “Nobody cares.”
• Perception: “Tor is for experts.”
• We haven't publicly threatened their control: “Tor is for civil liberties in free countries.”
• Realize that we're already in the arms race. These constraints teach us about priorities and capabilities of our various attackers.
Outline

- Goals
- Assumptions (threat model)
- What Tor offers now
- Current proxy solutions
- *What we need to add to Tor*
- All the other issues that come up
Bridge relays

- Hundreds of thousands of Tor users, already self-selected for caring about privacy.
- Add a “Tor for Freedom” button to Vidalia (the most popular Tor GUI).
- Rate limit to 20KB/s?
- They can be internal relays, and don't have to be exit relays.
Bridge directory authorities

- Specialized dir authorities that aggregate and track bridges, but don't provide a public list:
 - You can keep up-to-date about a bridge once you know its key, but can't just grab list of all bridges.
- Identity key and address for default bridge authorities ship with Tor.
- Bridges publish via Tor, in case somebody is monitoring the authority's network.
One working bridge is enough

- Connect via that bridge to the bridge authority.
- ...and to the main Tor network.
- Remember, all of this happens in the background.
- “How to circumvent for all transactions (and trust the pages you get)” is now reduced to “How to learn about a working bridge”.

Hiding Tor's network fingerprint

- [Skipping details for time]
- Get rid of plaintext HTTP (used by directories)
- Pick a good default port like 443.
- Make the TLS handshake look more like an ordinary HTTPS certificate exchange.
- Better understand timing and volume fingerprint attacks.
Discovering working bridge relays

- Tor's modular design means we can separate the relay component from the discovery component.
- So we can use any discovery approach we like.
- Bridge relays change the problem from “How do I keep 1000 IP addresses public without letting the attacker learn them?”
- ...But alas, it's still going to be an arms race.
Discovery: bootstrapping

- We assume users already have some way of bypassing the firewall to bootstrap.
- Open proxy servers, instant messaging, Skype, WoW, ...
- Or they know a friend who can.
Independent bridges, no central discovery

• Like CGIProxy.

• Users could bootstrap by
 – knowing the bridge's operator, or
 – learning about the bridge from a local friend.

• “Telling a friend” has interesting incentives:
 – If he gets it blocked, you can't use it either now.
 – You're mapping your social network for the adversary.
Families of bridges, no central discovery

- Volunteers run several bridges at once, or coordinate with other volunteers.
- The goal is that some bridges will be available at any given time.
- Each family has a bridge authority, to add new bridges to the pool, expire abandoned or blocked bridges, etc.
- Remember: this is all automated by the Tor client.
Public bridges, central discovery

- What about bridges who don't know users? Or users who don't know any bridges?
- Divide bridges into pools based on identity key.
- Each pool corresponds to a distribution strategy. We start with eight strategies.
- Each strategy is designed to exercise a different scarce resource or property of the user.
Distribution strategy #1

- Time-release bridge addresses.
- Divide available bridges into partitions, and each partition is deterministically available only in certain time windows.
- This pool will be first to get blocked, but
 - it will help to bootstrap until it is blocked
 - it won't be blocked by every adversary
Distribution strategy #2

- Publish bridge addresses based on IP address of requester.
- Divide bridges into partitions, hash the requester's IP address, choose a random bridge from the appropriate partition.
- (Don't use entire IP address, just first 3 octets.)
- As a special case, treat all Tor exit IP addresses as being on the same network.
Distribution strategy #3

- Combine time-based and location-based strategies.
- The bridge address provided in a given time slot is deterministic within the partition, rather than chosen randomly each time.
- So later requests during that time slot from a given network are given the same bridge address as the first request.
Distribution strategy #4

- Use Circumventor's “mailing list trick”.
- Start a mailing list, let people sign up, send out a few new bridge addresses every few days.
- The adversary will block them, but not immediately.
- Every three or four days seems to be sufficient for Circumventor for now.
Distribution strategy #5

- Users provide an email address and we mail them a bridge address.
- Limit one response per email address?
- Require a CAPTCHA.

 - We can leverage Yahoo and Gmail CAPTCHAs!
Distribution strategy #6

- Social network reputation system.
- Pick some seeds (trusted people in blocked areas) and give them a few dozen bridge addresses and a few “delegation tokens”.
- Run a database near the bridge authority; Tor clients log in to learn more bridge addresses.
- Users can delegate trust to other people by giving them a token, which can be exchanged for a new account in the database.
Distribution strategy #6 (cont)

- Accounts “in good standing” then accrue new bridge addresses and new tokens.
- How do we decide we like an account? If the bridges it knows don't end up blocked.
- Could track reputation between accounts, or use blinded tokens to prevent even the database from mapping the social network.
- Gets really messy. Future work.
Distribution strategies #7 and #8

- Held in reserve, in case all our tricks fail at once and we need to deploy new strategies quickly.
- Please come up with new strategies and tell us! For example, SMS messages? For example, proof-of-work by encrypting the bridge address with a 40-bit key?
Deploying all solutions at once

• Finally, we're not in the position of defender: We only need one scheme that works!
• The attacker must guess how to allocate his resources between all the discovery strategies.
• By deploying all of them at once, we make all of them more likely to succeed.
Outline

• Goals
• Assumptions (threat model)
• What Tor offers now
• Current proxy solutions
• What we need to add to Tor
• All the other issues that come up
How do we learn if a bridge has been blocked? (1)

- Active testing via users
 - Can use Blossom-like system to build circuits through them to test.
 - If we pick random users to test from, the adversary should sign up users.
 - Even if we have trusted users, adversary can still discover them and then monitor them.
How do we learn if a bridge has been blocked? (2)

• Passive testing via bridges
 – Bridges install GeoIP database, periodically report countries and traffic load.
 – But: If we don't see activity from Burma, does that mean it's blocked, or they're just asleep?
How do we learn if a bridge has been blocked? (3)

- Different zones of the Internet are blocked in different ways – not just one per country.
- Lots of different possible locations for the fault: at bridge, at user, in between?
- Attacker could poison our bridge DB by signing up already-blocked bridges.
- Eventual solution will probably involve a combination of active and passive testing.
Using Tor in oppressed areas

- Common assumption: risk of using Tor increases as firewall gets more restrictive.
- But as firewall gets more restrictive, more ordinary people use Tor too, for more mainstream activities.
- So the “median” use becomes more acceptable?
Trusting local hardware/software

- Internet cafes
- USB-based Tor package
- CD-based Tor package (LiveCD)
How many bridges do you need to know about to stay connected?

- Cablemodem / DSL bridges will disappear or move periodically.
- Already a tough problem with natural churn, but they can also get blocked.
- Related: how often should users fetch updates?
Cablemodems don't usually run big websites

- So the attacker can just block all connections to Comcast, Verizon, ...
- We need to get bridges on both “consumer” and “producer” addresses.
- Also have to worry about economic pressure, E.g. from China on Verizon.
Publicity attracts attention

- Many circumvention tools launch with huge media splashes. (The media loves this.)
- But publicity attracts attention of the censors.
- We threaten their *appearance* of control, so they must respond.
- We can control the pace of the arms race.
Next steps

- Technical solutions won't solve the whole censorship problem. After all, firewalls are *socially* very successful in these countries.
- But a strong technical solution is still a critical puzzle piece.
- Next steps: deploy prototype bridges and bridge authorities, implement some discovery strategies, and get more intuition about what should come next.
And Tor itself needs to survive

• Ongoing discussion around the world: is anonymity useful for the world?
• Data retention threatens privacy and safety, but won't catch the bad guys.
• We need your help! More Tor servers, more volunteers, more funding, ...